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Abstract. The infinite-U single-impurity Anderson model for rare earth alloys is examined 
with a new set of selfamistent coupled integral equations, which can be embedded nn the 
large-N expansion scheme (N is the local spin degeneracy). The finite-temperature impurity 
density of states (DOS) and the spin-fluctuation spectra are calculated exactly up to the order 
O ( l / N 2 ) .  The presented conserving approximation goes well beyond he 1/N approximation 
(NCA) and maintains local Fermi-liquid propehes down to very low temperatures. The position 
of the low-lying AbrikosovSuhl resonance (ASR) in the impurity DOS is in accordance with 
Friedel's sum rule. For N = 2 its shift toward the chemical potential. compared Lo the NCA. wn 
be @aced back to the influence of the vertex corrections. The width and height of the ASR are 
governed by the universal low-temperature energy scale TK. Temperature and degeneracy N 
dependence of the static magnetic susceptibility is found to be in excellent agreement with the 
Bethe M S ~ Z  results. Threshold exponents of the local propagators are discussed. The resonant 
level regime (N = I )  and intermediate-valence regime (14 < A) of the model are thoroughly 
investigated as a critical test of the quality of the approximation. Some applications to the 
Anderson lattice model are poinled out. 

1. Introduction 

Recently a major improvement has been reported on the perturbational approach to the 
single-impurity Anderson model (SIAM) with N-fold degenerate local state in  the limit of 
infinitely large Coulomb repulsion L1[3]. The aim of this paper is to present in detail the 
results obtained so far with this so-called post-NCA theory (PNCA,). This approximation 
contains a resumation of infinite numbers of skeleton diagrams and is exact up to order 
O(l /N*) .  The skeleton diagrams included physically describe complicated multiexcitation 
processes. 

The paper is organized as follows: in section 2, the l a r g e 4  expansion is used to derive 
the self-consistent coupled integral equation for the self-energies and the vertex function. 
The physical processes included will be explained. In section 3 numerically obtained 
solutions for the local propagators will be presented and their threshold exponents related to 
results furnished by other methods. A detailed analysis of the one-particle spectra will be 
the topic of section 4 including a discussion of the Fermi-liquid properties and the impact 
of the vertex corrections. In section 5, we will develop a theory of the magnetic vertex 
correction exact up to O ( l / N 3 )  and compare the calculated static magnetic susceptibility 
with the Bethe ansatz results. Spin-fluctuation spectra will also be covered. The two critical 
cases, the intermediate-valence and the resonant level case, will be thoroughly examined in 
section 6. In section 7, a summary and an outlook on further applications will be given. 

0953-8984/95/142801+18$19.50 @ 1995 IOP Publishing Ltd 2801 
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2. Theory 

In direct perturbation theory a well established set of diagrammatical rules has been 
established to evaluate self-energy contributions to the local propagator P M ( z )  [12, 51. In 
figure 1 the lowest-order contributions up to Va to the self-energy &(z) of propagator Po(z) 
of the unoccupied state are shown. Contributions (b) and (c) are one-particle irreducible 
but contain self-energy insertions and are already included in the skeleton diagram (a). In 
order V 6  there exists only one skeleton diagram, whereas there are exactly WO in order V 8 .  
To include these higher-order corrections, a well established concept of vertex functions 
is used. In our case, a vertex function is defined by cutting the electron and the local 
propagator line at the uppermost vertex in each skeleton diagram and by summing up all 
contributions of the remaining lower parts of the skeletons. The concept of vertex function 
has already been successfully applied in an NCA theory (non-crossing approximation) for the 
finite-U Anderson model 1161. The resulting dimensionless factor A,(.. y) renormalizes 
the bare hybridization vertex V of an absorbed band electron in an energy-dependent way; 
x is the ingoing and y the outgoing energy of the local propagator. The corresponding 
vertex function A i ( x ,  y)  for an emitted band electron is obtained from the vertex function 
of an absorbed electron A,(x, y) by symmetry: A i ( x ,  y) = AL(y, x ) .  Therefore we only 
calculate Am(x, y) A,(x, y). In a formal way all skeleton diagrams are summed up by 
using the exact vertex function in 

ZO(Z)  = V 2  Cf(4Am(~, z + edPm(z + 61) 

& ( E )  = v2Cf(-fk)hm(~-EklZ)P,(Z -€d. (2) 

(1) 
km 

k 

Approximations are made by the selection of contributions to Am. The NCA, for example, 
is recovered by setting A,(x, y) = 1. 

In order to derive the integral equation for the vertex function exactly up to O ( l / N 2 )  
the lower parts of the skeleton diagrams (d) and (e) have to be included in addition to 
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Figure 2. Diagrammarid representation of the self-consistency equation of the vertex function 
An(=, y )  in O ( l / N z ) .  

+ a  
Figure 3. Generating functional for the self-energies and the Green's functions up to order 
O ( l / N z ) .  The PN- contains additional highworder contributions. 

skeleton diagram (a). Skeleton (0 can be neglected, since it is of the order O ( l / N 3 ) .  The 
corresponding generating functional is shown diagrammatically in figure 3. An infinite 
number of skeletons are resummed by replacing the bare hybridization vertex by the 
renormalized one VA&. y) in each diagram in order to include as many higher-order 
terms as possible. This yields a self-consistent equation for the vertex function displayed 
in figure 2 [3]. In the case of zero magnetic field all P, are equal, and the vertex function 
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is reduced to 

A(x9 Y )  Am(x. 4') 

= 1 - lV14/m --m S _ , _ d u d u p ( u ) p ( u ) f ( u ) f ( - u ) C ( x , x  + u , x  + U  - U) 
XA(X + U - U, y + U - u ) H ( y ,  y - U. y + U - U). (3) 

Here we have chosen p ( 6 )  to be the density of states (DOS) of the conduction electrons and 
the auxiliary functions G, H and K 

G ( x , x + ~ , x + ~ - ~ ) = A ( x , x + u ) P , ( ~ + u )  
XA(X + U - U, X + u)P& + U - U) (4) 

The negative sign in equation (3) takes into account the odd number of crossing electron 
lines in the skeleton (d) while in diagram (e) an even number of crossing lines can be found. 
The approximation defined by equations (1) to (6) will be called PNCA, in the following 
(00 stands for U = CO). 

In the one-particle Green's function F,(io,) the vertex correction also comes into play 
in a natural way [7]: 

F,(io,) = 1 $ %e-BzAm(z, z + io,JPo(z)P,(z + io,). (7) Zr ~ 2 n i  

This equation can e.g. be obtained by cutting one band electron line in the functional a[&] 
of figure 3. Thereby, no ambiguity is left in the analytic expression. The contour C encircles 
all the singularities of the kemel in an anticlockwise fashion. Analytic continuation of the 
Green's function gives 
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and the complex auxiliary functions 

WA,(w, U +  io,) f[A(w + is, w + iw,) + A(w - i6, w + io.)] 

3A,(w, o + io.) (l/Zi)[A(w + is, w + io.) - A(o - is, o + io.)] 

WAY(@ - io,, o) = &[A(o - io., o + is) + A(o - io,, o - is)] 

DAJo - iw,, w )  = (1/2i)[A(w - iw., w + is) - A(w - io,,@ - is)] 

<Az (x, Y )  - ( l / rZ~)e-~xDA,(x,  y) 

CA,,(X, Y )  = -(l/nZf)e-@Y8Ay(x, y). 

(10) 

The functions b ( o )  introduced above have a simple physical meaning as defectpropagator: 
integration over the whole frequency range yields the occupation probability (*M,+,) of the 
local state M. The complex functions W (8) A,(y) and <A,,(x. y) enable the evaluation of 
equation (7) for real frequencies and thus serve purely numerical purposes. 

3. Local propagators, threshold exponents and specific heat 

On a cluster of workstations, we brought a numerical iteration procedure for the above 
system of integral equations to full convergence using dynamically defined logarithmic 
meshes for the threefold integration in (3). Besides the modulus IlP;) - Ppl)ll ( i  labels 
the step of iteration), which reaches a value of typically at the end, the sum rules 

have been checked to estimate the quality of the numerical calculations. The deviation 
between left and right side is in the range of typically 1 4 %  and scales with the inverse 
number of mesh points. For all numerical studies all energies are measured in units of the 
Anderson width A = xV2N? ( V z  is the square of the hybridization matrix element and 
N? the band DOS at the chemical potential). The featureless symmetric conduction band 
DOS has been chosen to be p”(o) = [l/Zr(1.25)W]e~p(-(o/W)~) to reduce band edge 
effects. The half band width is set to W = 1OA. In most cases the temperature will be 
measured in units of the corresponding Kondo energy 

For the investigation of the Kondo regime tf = -3A and N = 2 is chosen, since the 
largest impact of the vertex function is to be expected for small N .  In figure 4 the spectral 
density po(o) E ( l /r)SmPo(w - is) is displayed in the vicinity of the threshold for three 
different temperatures T = 0.5, 1, ZTK. Note the fact that the energy scale has been shifted 
by the threshold energy E$. The transformation 

defining a renormalized local partition function 
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Figure 4. Comparison of the spectra of Po(@) (a) and Pm(@) (b) in NCA and PNCA- at 
T = 0.5.1 .O, 2 . 0 T ~ .  The inmase in height at o = 0 is correlated with a dccrease oftempcrature. 
Parameters: N = 2. = -3A. W = IOA, 

and a local propagator &z) s PM(Z + E%), ensures that the numerically calculated 
stays of the order O( 1) during the variation of temperature. Also the defect propugurors (M 
can be calculated very accurately down to very low temperatures. 

With decreasing temperature the threshold behaviour of the propagator PO in PNCA, 
exhibits a weaker increase than the corresponding NCA propagator. We regard this as a strong 
hint toward a reduced threshold exponent a0 compared with the NCA due to the influence 
of the vertex corrections. On the other hand, the inset of figure 4(a) indicates quite clearly 
an excellent agreement on the high-energy part of the spectrum in both approximations 
as to be expected. The spectral density p,(o), shown in figure 4(b) for the same set 
of model parameters and temperatures, reveals an additional difference between the two 
approximations. POPNCA and PLNCA already develop their common threshold energy E. at 
finite temperature while in NCA an identical E& for both propagators is found only at T = 0. 
This gives rise to a temperature dependent position of the ASR in the oneparticle spectra in 
NCA, as we will see in the next section. 

To obtain a first estimate for threshold exponents we fit the ionic spectrum in the 
low-frequency range 0 < w < TK to a tr ial function AM(@) = u ( T ) w - ~ ~ " )  at different 
temperatures. This procedure has been checked for the NCA and provides the exactly known 
NCA exponents [YO = N / ( N  -I- 1) and a, = I / ( N  + 1) within an accuracy of 5%. While 
no temperature dependence is found for the exponent (YO = 0.44 f 0.02, figure 5(a), the 
different values of a,(T) have been used to to extrapolate a,(O) = 0.27 f 0.01 for the 
present parameters N = 2, q = -3A giving nr = 0.87, figure S(b). 

There is still no agreement in the literature about the exact exponents for N 2 2. The 
proposal of Menge and Muller-Hartmann [13] 

indicates a dependence of the exponents not only on the degeneracy N but also on the 
occupation number nr in all regimes. This proposal has been recently backed by a analysis 
of pseudo-boson and fermion propagators provided by the numerical renormalization group 
for N = 2 [6]. On the other hand, an analysis of parquet equations for the Kondo limit of 
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m e  5. Threshold behaviour of the specmm of PO(:) (a) and an estimation far the threshold 
expnenf am b). Parameters as before. 

the model (nf = 1) claims that the exponents 

N - 2 / N 2  
N + 1 - 2 / N 2  

1 - 1 / N 2  
a -  

m -  N + 1 - 2 / N 2  
a0 = 

should be exact to order O ( l / N z )  [ I l l .  We did not investigate the threshold behaviour on 
the full scale of the model parameters. Therefore we cannot rule out any of the proposals, 
even though the PNCA, exponents in the Kondo regime come very close to Gruneberg's 
and Keiter's results. 

Since we have convinced ourselves that the high-energy parts of the spectra remain 
unchanged, we can still use the NCA to obtain specific heat data for a wide temperature 
range. On the other hand, the low-energy corrections turn out to be essential for the 
calculation of correlation functions. In figures 6 and I origin and scaling behaviour of the 
two different contributions to the specific heat are clearly demonstrated. In (a) the effective 
hybridization is tuned leading to a renormalized Anderson width A* and in (b) the position 
of the bare f-electron level has been varied for N = 2.  While the first maximum in each 
curve of the specific heat turns out to be an universal function of T/TK, the position of 
the second is rather determined by the f-level energy and its width by A*. Therefore, 
the first peak is generated by spin excitations on the Kondo scale T - TK, whereas the 
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second contains charge excitations from the broadened f-level into unoccupied band states. 
With increasing degeneracy the maximum due to spin excitations is enhanced essentially 
linearly with N [4], since their contribution is proportional to the number of channels, as 
is already known from Bethe ansaiz calculations [17]. The charge excitation peak is rather 
decreased and smeared out by broadening of the f-level proportional to NA. Its position 
and broadening is in good agreement with Bethe a". [ 141 and numerical renormalization 
group calculations 1151, but the height comes out somewhat smaller. This could be due to 
the absence of the doubly occupied state for U = W. Of course, the appearance of the 
charge excitations is more of academic interest for the low-temperature behaviour, but may 
be important for spectroscopic studies. 

4. One-particle spectra 

The generalized Friedel's sum rule 

relates the local occupation number nr to the generalized phase shifts S,,,(o) = 
-3mIn [-F;'(iS)]. K essentially measures the asymmetry of the f-electron spectrum and 
can be interpreted as the negative change of the number of band electrons in the presence 
of the impurity [ I ] .  In the limit T = 0, equation (15) is used in combination with local 
Fermi-liquid relations to derive the density of states rule: 

This formula predicts a scattering resonance with a maximum height of I/%A near the 
chemical potential ((nr - K )  W 1) for N = 2 and T = 0, the ASR, which moves away 
from I.I with increasing degeneracy N. Figure 8 shows the oneparticle spectra of PNCAm 
and NCA for five values of temperature. The most significant differences between both 
approximations concern the position and height of the ASR. The position in NCA is found 
to be strongly temperature dependent and the height already exceeds the unitarity limit of 
l / (aA) at temperatures slightly below TK. We can trace back the temperature dependence 
to the mismatch of the threshold energies of P, and P,,,, which merge only at T = 0. The 
violation of equation (16) clearly indicates the importance of the vertex corrections. On the 
other hand, the PNC& ASR grows with decreasing temperature at a stable position close 
to the chemical potential. It violates only sightly the density of states sum rule and its 
agreement with Friedel's sum rule (15) is found to be within 7% as indicated in table 1. 

By focusing our attention on figure 9, we gain insight on the impact of vertex corrections 
on the the ASR. The PNCAm result (solid curve) is compared to the NCA result (dashed 
curve) for the fixed temperature T = 0.5TK and additionally to a curve where the NCA 
propagators P M ( z )  have been used to evaluate the renormalized hybridization V A ( x ,  y) 
via equation (3). In the later convergence is achieved after two steps of iteration. The 
resulting ASR, calculated after each step, has been shifted towards the chemical potential, 
but stays enhanced compared to the P N C A ,  ASR. The reduction of height of the ASR is 
clearly connected to the modified threshold exponents as is also revealed by an inspection 
of the iteration procedure. This stressed the importance of vertex corrections in the local 
propagators PM(z ) .  
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Figure 6. Specific heat contribution of the impurity versus tempemure T/TK for (a) different 
Values of the effective Anderson widlh A* = zIV'IZm, cf = -3A0, and (b) different values of 
€f .  Parameters: N = 2, ct = -3A,,. A" = 0.1 w. 

The plots in figure 10 attract attention to the local Fermi-liquid properties as seen in the 
imaginary part of the self-energy of the Green's function: 

From the symmetric Anderson model it is known that C, = A/T," and CT = A(r2/T,") 
[IO]. In the strongly asymmetric case (U = 00) under consideration here, only the scaling 
C, = A / T ;  can be found. The quadrahc expansion coefficient for the temperature exhibits a 
rather strong dependence on the degeneracy N as been shown in figure 10, originating from 
the shift of the ASR away from the chemical potential, while in the completely symmetric 
case the phase shift 6, remains n/2 independently of N .  On the base of our PNCA,  results 
we suggest a new analytic investigation of Fermi-liquid relations for the asymmetric case. 
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Figure 7. Specific heY contribution of he impurity versus tempemre TlAo for (a) different 
values of the effective Anderson width A* = nlV'IZpo. cy = -3Ao. and @) different values of 
er, h a m t e n :  N = 2.61 = -3A.0. A, = 0.1 W. 

5. Magnetic susceptibility and spin fluctuations 

Magnetic excitations are measured by the magnetic susceptibility: 

.1 M = x(-iu,J (18) 
z - H  z + i u . - H  -1 x ( i u n ) = - i $ G e  dz - #'Tr 

where iu. = 2nin/,9 is a bosonic Matsubara frequency. Focusi?g OUT attention on the 
operator for the local magnetization in the SIAM, f i z  = gpLg E, m X,,,, we rewrite Xf(iu,) 
in analogy to F,: 

defining p: j ( j +  l)(gpd2. The new magnetic vertex function r(x, y )  formally includes 
all higher-order contributions arising from diagrams with crossing band electron lines; in 
NCA r(x, y )  = 1. It tums out to be Symmetric in its complex energy arguments in order 
to maintain the symmetry x(iun) = x(-iu.). Using the standard set of diagrammatical 
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Figure 8. Tempenlure dependence of Ule ASR (a) in PN& and @) in NU. Parameters: as 
before. 

Table 1. Parameters: N = 2.61 = -3A. W = IO 
(a) Friedel's sum rule and the NCA theory 

TITK nf g2 Kms 

0.1 0.8682 0.5863 0.2819 
0.2 0.8682 0.6114 0.2567 
0.3 0.8682 0.6379 0.2303 

(b) Friedel's sum rule and the mum theory 

TITK nt ~2 KZs 

0.1 0.8445 0.9023 -0.0577 
0.2 0.8525 0.9140 -0.0615 
0.3 0.8565 0.9207 -0.0641 

rules 151, we obtain r ( x , y )  exactly up to order O(l/N3) shown in figure. 11.  O ( I / N * )  
contributions compensate each other. On the other hand, diagrams (b) and (c) in figure 11 
iransform into each other by exchanging the energy arguments. Therefore, we only have to 
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Figure 9. Imp53 of the vertex mrreclion on the one-pmicle spectrum. Parameters: as before 
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Figure 11. Diagrammatic representation of the self-cansiatency condition of the magnetic w t e x  
function r (x.  y ) .  

and to solve equations (20) and (21) self-consistently. Equation (19) then leads to a local 
dynamical susceptibility Xr, which is exact in O ( l / N z ) .  

The quality of the approximation has been checked by comparison of the static magnetic 
susceptibility Xr(T) = lim,,o x ( u )  to the exact Bethe Msak results 1171, figure 12. The 
PNCA, susceptibility shows a surprisingly good agreement with the exact results, even 
though the Bethe ansak susceptibility has been obtained for the CoqblinSchrieffer model. 
In particular, the characteristic maximum for degeneracies N > 3 has been reproduced in 
PNCA,. On the other hand in NCA not even a saturation of Xr occurs for 0.1T~ < T c TK 
and N = 2. The deficiencies of the NCA do not show up so strongly at e.g. N = 6 or at 
higher temperatures T > TK, where vertex corrections become less important. 

The scattering function S(v)  for neutron scattering experiments is linked to the magnetic 
susceptibility by the dissipation-fluctuation theorem: 

The right-hand side approaches the spin-fluctuation spectrum u(w)  Smx(o) /w for small 
w. In figure 13 the spin-fluctuation spectra of the P N C b  and the NCA are compared for 
three different degeneracies N at a fixed temperature T = 0 . 2 T ~ .  The pronounced maxima 
of uPNCA(w) for N > 3 resemble the maxima in the static susceptibility discussed before. 
They appear on the same energy scale w ( T )  % 0.5T~. It is also interesting to note that 
even though no maximum is found for N = 2 a rather broad inelastic peak can be reported 
in uPNCA(w) which is not seen in the NCA spectrum. Of course, this features disappears 
well above TK for both approximations leaving a single elastic peak at w = 0 in the spectra. 
The low-frequency behaviour of smx(w)  can be interpolated by w/(I&[ + oz). rmut 
is the neutron scattering linewidth which is experimentally defined by the position of the 
maximum. Here, it is convenient to use 
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0.4 1 a 
(a) 

0 ' ' ' I  ' ' ' b  ' 

0.01 0.1 lqTK1O 100 1000 

Figure 12. Static magnetic susceptibility calculated (a) in NCA, (b) in PNC& for the single. 
impurity Anderson model and (c) for the CcqblinSchrieffer models using the Bethe ~ S L I I L  [171. 
7he NCA results are normalized with respect to the P N C ~  values at T = 0. Parameten: as in 
figure IO. 

In figure 14, the reduced linewidth rneut/TK is displayed versus temperature for N = 2,4,6 
in P N C k , .  The linewidth is nearly temperature independent in the local Fermi-liquid regime 
at T -= TK. It develops a weak minimum at T sx 0.5T~ which is slightly enhanced by 
increasing degeneracy and behaves like f i  for high temperatures. 

6. Critical examination of the PNCAm 

In the last three sections we discussed PNCA, results obtained for the Kondo regime of the 
model. In this section we will focus our attention on the case N = 1 and the mixed-valence 
regime. For N = 1 all diagrams are of the same order in the sense of an l / N  expansion 
scheme. Nevertheless, this classification is questionable here, since there is no Kondo effect 
left although the diagram topology remains unchanged. The one-particle Green's function 
is exactly known: 
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Figure 13. Dmx(o)/o versus ~ / T K  for N = 2.4.6, calculated at T = O ~ T K  (a) in PNCA, 
and (b) in NCA. Parameters: as in figure 10. 

(#k denotes the number of band electron states). In figure 15 the one-particle spectra of 
the NCA and the PNCA, are compared with the exact result for two values of e. While 
the P&) have been determined very accurately, oscillations of the defect propagators 
c(o) = exp(-pm)(I/zZf)3m P&) during the iteration procedure cause oscillations in 
the PNCA, spectra around the exact solution, i.e. convergence is not fully obtained in this 
case. These oscillations contribute about 3% to the residual deviations of the PNCA,. In 
the most critical case, cy = -A, the NCA is strongly pathological near p, but the PNCA, is 
much less so. For t y  = -3A only a very weak pathology at p = 0 remains, while the NCA 
still produces an unphysical resonance at the chemical potential. 

A rather strange two-peak svucturc is found in the spectrum for the case of the 
intermediate-valence regime q = -A and N = 2, shown in figure 16(a): the first peak 
nearly at p = 0 exceeds clearly the density of states rule (16) p(0) = 0.21 for ?if % 0.6, 
which would be the height of the minimum in between both peaks. We suppose that the true 
spectrum will monotonically decrease from the minimum position onwards for decreasing 
energy. The first peak clearly reflects a PNCA, pathology akeady seen in figure 15(a). 
Despite this spurious structure, the overdl violation of the the DOS sum rule is reduced 
from almost 60% in NCA down to 15% in PNCA,. In part (b) of the figure, cf is chosen 
to be +A. Again, only a weak pathology is found in this case, and the specmm can be 
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11 . . . . ,  
10 - 

9 -  

Figure 14. Neutron scattering linewidth r., versus TITK calculated in PNCA- for different 
N. Parameters: as in figure IO. 

Figure 15. One-pwicle spectra in NCA and WCAm compared with Lhe e x m  solution for (a) 
r r = - A , T = 1 / 1 5 A ~ d n d ) e r = - 3 A . T = 1 / 6 0 A .  Parameter: N = l .  

reasonably fitted using a Lorentzian with a width of 0.95A. This reflects the fact that there 
is no blocking effect in this regime, whereas the local correlations still reduce the spectral 
weight to (Xoo)  + (X") = 0.87 < 1. 

7. Conclusion and outlook 

We have demonstrated that our new PNCA, approximation to the Anderson mcdel improves 
the low-energy properties in the Kondo regime quite remarkably, whereas the satisfactory 
behaviour of the old NCA approximation at higher energies is maintained. Vertex corrections 
do have in fact a large impact on the low-energy excitations: the position and height of 
the ASR for N = 2 is shifted towards the chemical potential as consistent with Friedel's 
sum rule. Also the magnetic susceptibility agrees surprisingly well with the Bethe ansufz 
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Figure 16. One-particle spectra in NCA and P N C ~  for (a) y = -A and (b) cy = +A, the 
intermediate-valence repime. Parameters: N = 2, T = A A .  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 
W 

Figure 17. f-spectra of the periodic Anderson model in the viciniry of lhe chemical potential 
(a) in LPNCA- and (b) in LNCA for Wee temperatures T = 0.75. 1.0.2.OT~. Panmeters 
N = 2 , e f = - 3 A , W = l O A .  

results. We plan to apply this method also to the finite-U Anderson model and the 
extended Anderson model [9, 21, which includes a direct exchange interaction between 
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f and conduction electrons. The self-consistent set of equations has been derived already 
141. Our perturbational approach to the Anderson model has opened the prospect of studying 
the low-temperature properties of heavy-fermion systems in much more detail than before. 
Quite generally, the so-called LNCA scheme [8]  can be applied, which provides a very 
successful perturbational treatment of the Anderson lattice. Within this theory based on a 
picture of independent effective sides plus quasiparticle interactions collective effects like 
superconducting or magnetic ground states can be calculated in a systematic way. In order 
to underline this perspective we present the temperature-dependent pseudogap formation 
in the f-spectrum of the Anderson lattice with N = 2 and cr = -3A in figure 17. 
The temperatures are given in units of the corresponding impurity Kondo temperature 
which deviates moderately from the characteristic temperature of the lattice T*. While 
the LNCA scheme combined with the local NCA is limited to temperatures larger than TK 
due to violations of the local Fermi-liquid properties, the so-called LPNCA,, which uses the 
PNCA, to solve the effective site, reaches much lower temperatures. Since now the ASR of 
the impurity is located only very slightly above the chemical potential in accordance with 
Friedel's sum rule, the pseudogap is formed around w = 0 in the L P N C ~ .  In a forthcoming 
publication we will investigate the temperature-dependent quasiparticle band structure and 
the impact on the transport coefficients and optical conductivity in greater detail. 
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